Third Semester B.E. Degree Examination, June/July 2019 Analog Electronic Circuits Time: 3 hrs. Max. Marks: 80 Note: Answer any FIVE full questions, choosing ONE full question from each module. ## Module-1 1 a. For the circuit shown in Fig.Q1(a), sketch the output waveforms and transfer characteristics for cut in voltage = 0.7V. (08 Marks) Fig.Q1(a) b. Derive an expression for I_B, I_C, V_{CE} for voltage divider bias using exact analysis. (08 Marks) #### OR 2 a. In a voltage divider bias circuit of BJT. $R_C = 4K\Omega$, $R_E = 1.5K\Omega$, $R_1 = 39K\Omega$, $R_2 = 3.9K\Omega$, $V_{CC} = 18V$ and $\beta = 70$. Find I_{CQ} and V_{CEQ} . (08 Marks) b. Explain the operation of transistor as switch along with suitable circuit and necessary waveforms. Highlight the design procedure. (08 Marks) ## Module-2 3 a. Define h-parameters and hence derive h-parameter model of a CE – BJT. b. State and prove Miller's theorem. (06 Marks) (04 Marks) (06 Marks) c. For the network shown in Fig.Q3(c), determine r_e , Z_i , Z_0 , A_V and A_I . ### OR 4 a. Determine the high frequency response of the amplifier circuit shown in Fig.Q4(a). Draw the frequency response curve. $\beta = 100$, $C_{be} = 20 pF$, $C_{bc} = 4 pF$, $h_{ie} = 1100$, $C_{wi} = 6 pF$, $C_{WO} = 8 pF$, $C_{CC} = 1 pF$. (08 Marks) Fig.Q4(a) b. Describe Miller effect and derive an equation for miller input and output capacitances. (08 Marks) Module-3 - Derive an expression for Z_i, A_V and A_I for Darlington emitter follower circuit. (08 Marks) 5 - Explain the block diagram of a feedback amplifier. (08 Marks) - List the general characteristics of negative feedback amplifier and derive the expression for 6 (08 Marks) gain with negative feedback. - Derive the expression of R_{if} and R_{of} for voltage series feedback amplifier. (08 Marks) Module-4 - Explain the operation of a Class B push pull amplifier and show that its conversion 7 (08 Marks) efficiency is 78.5%. - What is Brakhansen criteria for sustained oscillation? Explain basic principle of operation of (08 Marks) oscillators. - Prove that the maximum conversion efficiency of class A transformer coupled amplifier is 8 50%. - The harmonic distortion component in a power amplifier is $D_2 = 0.1$, $D_3 = 0.02$, $D_4 = 0.01$. The fundamental current amplitude is 4A and it supplies a load of 8Ω . Find total harmonic (08 Marks) distortion, fundamental power and total power. **Module-5** - Draw the circuit of common source amplifier using JFET with the help of small signal model and derive an expression for input impedance, voltage gain and output impedance. - i) g_m ii) r_d iii) Z_i iv) Z_0 v) A_V . For the JFET amplifier shown in Fig.Q9(b). Calculate (08 Marks) Fig.Q9(b) OR - With the help of neat diagram, explain the construction, working and characteristics of 10 n-channel JFET. - Define transconductance and r_d of FET. Explain the procedure to determine the above (08 Marks) values graphically.