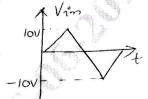
Third Semester B.E. Degree Examination, June/July 2019 Analog Electronic Circuits


Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. For the circuit shown in Fig.Q1(a), sketch the output waveforms and transfer characteristics for cut in voltage = 0.7V. (08 Marks)

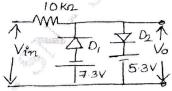


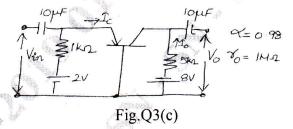
Fig.Q1(a)

b. Derive an expression for I_B, I_C, V_{CE} for voltage divider bias using exact analysis. (08 Marks)

OR

2 a. In a voltage divider bias circuit of BJT. $R_C = 4K\Omega$, $R_E = 1.5K\Omega$, $R_1 = 39K\Omega$, $R_2 = 3.9K\Omega$, $V_{CC} = 18V$ and $\beta = 70$. Find I_{CQ} and V_{CEQ} . (08 Marks)

b. Explain the operation of transistor as switch along with suitable circuit and necessary waveforms. Highlight the design procedure. (08 Marks)


Module-2

3 a. Define h-parameters and hence derive h-parameter model of a CE – BJT.

b. State and prove Miller's theorem.

(06 Marks) (04 Marks) (06 Marks)

c. For the network shown in Fig.Q3(c), determine r_e , Z_i , Z_0 , A_V and A_I .

OR

4 a. Determine the high frequency response of the amplifier circuit shown in Fig.Q4(a). Draw the frequency response curve.

 $\beta = 100$, $C_{be} = 20 pF$, $C_{bc} = 4 pF$, $h_{ie} = 1100$, $C_{wi} = 6 pF$, $C_{WO} = 8 pF$, $C_{CC} = 1 pF$. (08 Marks)

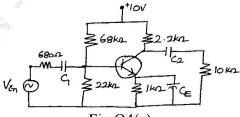


Fig.Q4(a)

b. Describe Miller effect and derive an equation for miller input and output capacitances.

(08 Marks)

Module-3

- Derive an expression for Z_i, A_V and A_I for Darlington emitter follower circuit. (08 Marks) 5
 - Explain the block diagram of a feedback amplifier.

(08 Marks)

- List the general characteristics of negative feedback amplifier and derive the expression for 6 (08 Marks) gain with negative feedback.
 - Derive the expression of R_{if} and R_{of} for voltage series feedback amplifier.

(08 Marks)

Module-4

- Explain the operation of a Class B push pull amplifier and show that its conversion 7 (08 Marks) efficiency is 78.5%.
 - What is Brakhansen criteria for sustained oscillation? Explain basic principle of operation of (08 Marks) oscillators.

- Prove that the maximum conversion efficiency of class A transformer coupled amplifier is 8 50%.
 - The harmonic distortion component in a power amplifier is $D_2 = 0.1$, $D_3 = 0.02$, $D_4 = 0.01$. The fundamental current amplitude is 4A and it supplies a load of 8Ω . Find total harmonic (08 Marks) distortion, fundamental power and total power.

Module-5

- Draw the circuit of common source amplifier using JFET with the help of small signal model and derive an expression for input impedance, voltage gain and output impedance.
 - i) g_m ii) r_d iii) Z_i iv) Z_0 v) A_V . For the JFET amplifier shown in Fig.Q9(b). Calculate (08 Marks)

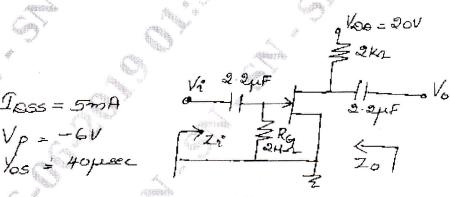


Fig.Q9(b)

OR

- With the help of neat diagram, explain the construction, working and characteristics of 10 n-channel JFET.
 - Define transconductance and r_d of FET. Explain the procedure to determine the above (08 Marks) values graphically.